Вычислить определитель Метод  Крамера Аналитическая геометрия Кривые второго порядка Вычислить предел Найти производные Комбинаторика Теория поля Вычислить интеграл числовые ряды

Типовик по математике

 Найти расстояние между параллельными прямыми .

Решение: Искомое расстояние найдем как расстояние от произвольной точки первой прямой до второй прямой. Возьмем на первой прямой произвольную точку, например, точку с абсциссой . Её ордината . Итак, на первой прямой выбрана точка А (1;3). Найдем теперь расстояние этой точки до второй прямой по формуле .

.

Даны точки М1 (-3; 7; -5) и М2 (-8; 3; -4). Составить уравнение плоскости, проходящей через точку М1 и перпендикулярной вектору .

Решение: Найдем координаты нормального вектора . Имеем .

Уравнение плоскости, проходящей через данную точку М (). Перпендикулярно данному вектору : .

Искомое уравнение плоскости: .

Через точку пересечения плоскостей  провести плоскость, параллельную плоскости . Найти расстояние точки М1 (1; -1; -1) до построенной плоскости.

Решение:

Плоскости пересекаются, следовательно . Решив систему уравнений , получим точку М (3; 5; 7).

Так как искомая плоскость параллельна плоскости , то в качестве ее нормального вектора можно взять нормальный вектор  данной плоскости ( - условие параллельности двух плоскостей).

Используя теперь уравнение плоскости, проходящей через точку М перпендикулярно данному вектору , получаем . Это и есть искомое уравнение.

Расстояние от точки  до плоскости  определяется по формуле . В данном случае .

Плоскость a проходит через точки: . Плоскость b проходит через ось ОХ и точку . Найти угол между плоскостями a и b.

Решение: Уравнение плоскости, проходящей через три данные точки   имеет вид . В данном случае .

Раскрывая этот определитель, получим   - уравнение плоскости a. Если плоскость проходит через ось ОХ, А = 0, D = 0(общее уравнение плоскости ) т. е.. Плоскость b проходит через ось ОХ и точку М4 (9,-3, 8). Подставляем в это уравнение координаты точки М4 получим или , таким образом, имеем , т. е.  - уравнение плоскости b.

Угол между плоскостями определяется по формулам , где . Нормальный вектор плоскости a: . Для плоскости b: . Определяем острый угол между плоскостями a и b:

.

Общее уравнение прямой  преобразовать к каноническому виду.

Решение:

Первый способ. Наметим такой план решения задачи: из системы исключим сначала y и выразим z через x, потом исключим х и выразим z теперь уже через y.

Для того чтобы из системы исключить у, сложим первое уравнение системы почленно со вторым. Получим, что , откуда .

Умножая первое уравнение на (2), а второе на ,(-3) и складывая их почленно, получим , откуда  или .

Сравнивая найденные значения z, получаем уравнение прямой в каноническом виде .

Умножая теперь все знаменатели на 15, окончательно получим . Прямая проходит через точку и имеет направляющий вектор .

Второй способ. Найдем направляющий вектор  прямой. Так как он должен быть перпендикулярен нормальным векторам заданных плоскостей  и , то в качестве его можно взять векторное произведение векторов : .

Таким образом, l = -3, m = 8, n = -15. За точку , через которую проходит искомая прямая, можно принять точку её пересечения с любой из координатных плоскостей, например с плоскостью ХOY. Поскольку при этом , координаты  определяются из системы уравнений заданных плоскостей, если положить в них

, отсюда получаем . Так как каноническое уравнение имеет вид , то в данном случае  .


На главную