Вычислить определитель Метод  Крамера Аналитическая геометрия Кривые второго порядка Вычислить предел Найти производные Комбинаторика Теория поля Вычислить интеграл числовые ряды

Типовик по математике

Теория вероятностей

Предмет теории вероятностей - изучение вероятност­ных закономерностей, возникающих при рассмотрении массо­вых однотипных случайных событий.

Событие - это любое явление, в отношении которого имеет смысл говорить, наступило оно или не наступило, в ре­зультате определенного комплекса условий или случайного эксперимента. Обозначаются события заглавными латинскими буквами .

Примерами случайного эксперимента являются подбрасы­вание монеты, извлечение одной карты из перетасованной ко­лоды, подсчет числа автомобилей в очереди на бензоколонке в данный момент и т.д.

Вероятностью  события  называется отношение числа  – элементарных исходов испытания, благоприятствующих наступлению события , к числу  – всех возможных элементарных исходов испытания.

 (5)

Пример 6. Найти вероятность, что при бросании монеты выпадет герб.

Решение. При бросании монеты имеются два равновозможных исхода: “выпадение герба” и “выпадение решки” . Для события  – “выпадение герба” благоприятен только один из них . Значит, вероятность .

Вероятность любого события заключена между нулем и единицей.

  (6)

Можно выделить следующие виды случайных событий:

Событие называется достоверным, если оно обязательно происходит при каждом осуществлении определенной сово­купности условий. Например, если брошена игральная кость, то выпадение не менее одного и не более шести очков является достоверным событием. Вероятность достоверного события  равна единице: .

Событие называется невозможным, если оно заведомо не произойдет ни при одном осуществлении данной совокупности условий. Например, если брошена игральная кость, то выпа­дение больше шести очков является невозможным событием. Вероятность невозможного события  равна нулю: .

Событие называется случайным, если оно может про­изойти, а может и не произойти при осуществлении данной совокупности условий. Например, если брошена игральная кость, то выпадение любого из шести очков является случай­ным событием.

События называются несовместными, если их одновре­менное появление при осуществлении комплекса условий невозможно, т.е. появление события  в данном испытании исключает появление события  в этом же испытании. На­пример, если из урны с черными и белыми шарами случайным образом извлекается шар ·черного цвета, то его появление ис­ключает извлечение белого шара в этой же попытке.

События называются единственно возможными, если появление в результате испытания одного и только одного из них является достоверным событием. Например, если стрелок произвел выстрел по цели, то обязательно произойдет одно из двух событий - попадание или промах. Эти события единст­венно возможные.

События называются равновозможными, если есть осно­вания считать, что ни одно из этих событий не является более возможным, чем другие. Например, появление герба и появ­ление надписи при бросании монеты есть события равновоз­можные, потому что предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндриче­скую форму, и наличие чеканки не влияет на выпадение той или иной стороны монеты.

Если событие  - какое-либо событие, то событие, со­стоящее в том, что событие  не наступило, называется про­тивоположным событию  и обозначается как .

События, происходящие при реализации определенного комплекса условий или в результате случайного эксперимен­та, называются элементарными исходами.

Считается, что при проведении случайного эксперимента реализуется только один из возможных элементарных исходов.


Образец решения варианта

1. Сколькими способами можно расставить на полке 5 различных книг?

Решение. Искомое число способов равно числу перестановок из 5 элементов (книг), т. е.  = 5! = 1·2·3·4·5 = 120.

2. Сколько «слов» по две буквы можно составить из букв a, b, c, d, e, таким образом, чтобы буквы в «словах» не повторялись?

Решение. Т.к. каждое «слово» должно содержать две буквы, то искомое число способов равно числу размещений из 5 элементов (букв) по две, т. е. .

3. Сколькими способами можно выбрать 1 красную гвоздику и 2 розовых из вазы, в которой стоят 10 красных и 4 розовых гвоздики?

Решение. Так как порядок выбора цветов не имеет значения, то красную гвоздику можно выбрать  способами. Выбрать две розовые гвоздики из имеющихся четырех можно  способами. По­этому букет из одной красной и двух розовых гвоздик можно составить, по правилу умножения,  способами.

4. Набирая номер телефона, абонент забыл последние 3 цифры, и помня лишь, что эти цифры различны, набрал их наугад. Найти вероятность того, что номер телефона набран правильно.

Решение. Благоприятствующий исход здесь один – правильный набор последних цифр . Всех возможных исходов здесь будет столько, сколько можно составить комбинаций из 3 цифр, порядок которых имеет значение, значит . Значит вероятность того, что номер набран правильно (событие ): .

5. Среди 100 колес 5 нестандартных. Для контроля выбирается 7 колес. Найти вероятность того, что среди них ровно 3 будет нестандартных.

Решение. Число всевозможных исходов равно количеству комбинаций из 100 колес по 7 штук, т.к. порядок значения не имеет, то . Благоприятствующий исход состоит в выборе ровно 3 нестандартных колес из 5 и совместном выборе (7-3) стандартных колес из (100-5), порядок значения не имеет. По правилу произведения . Следовательно, вероятность того, что среди взятых для контроля колес будет ровно 3 нестандартных (событие ): .


Вариант 1

Сколькими способами можно переставить буквы слова «факультет», таким образом, чтобы две буквы «т» шли подряд?

Имеется 6 пар перчаток различных размеров. Сколькими способами можно выбрать из них одну на левую руку и одну на правую руку так, чтобы они были разных размеров?

Имеются 48 задач по теории вероятностей. Сколькими способами их можно распределить между 13 студентами для самостоятельного решения по 4 задачи каждому?

В ящике 100 болтов диаметром d=4см и 2 болта диаметром d=6см. Наудачу извлекают один болт. Какова вероятность, что он диаметром d=6см?

В коробке 15 книг, среди которых 9 детективов. Наудачу берем 4 книги. Найти вероятность того, что среди них окажется 3 детектива.


На главную