Вычислить определитель Метод  Крамера Аналитическая геометрия Кривые второго порядка Вычислить предел Найти производные Комбинаторика Теория поля Вычислить интеграл числовые ряды

Типовик по математике

Дискретные случайные величины

Решение типовых задач

Прежде чем привести решение конкретных задач, обращаем ваше внимание на то, что решение всех заданий вариантов основано на одних и тех же фактах и свойствах дискретных случайных величин. Приведем несколько примеров их использования при решении конкретных задач, посвященных изучению данной темы

Задача 1. Найти у

Х

0

1

2

3

Р

0,2

0,3

0,4

у

Решение. , следовательно у находим из уравнения:

0,2+0,3+0,4+у=1  у=0,1.

Задача 2. D(X) = 0,4. Используя свойства дисперсии, найдите D(-2X+3).

Решение. .

Задача 3. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти .

Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:

X

1

2

3

4

P

0,4

0,3

0,2

0,1

Найдем :

 

Найдем .

.

.


Вариант №1

Найти у

Х

1

2

3

4

Р

0,1

у

0,2

0,4

D(X) = 1.5. Используя свойства дисперсии, найдите D(2X+5).

Вероятность появления события в одном испытании равна 0,6. Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события. Найти , , , .

Два стрелка делают по одному выстрелу в мишень. Вероятность попадания первого равна 0,6, второго 0,8. Составить закон распределения числа попаданий Х. Найти математическое ожидание, дисперсию, среднее квадратическое отклонение, третий центральный момент и функцию распределения. Построить график .

В ящике 3 белых шара и 4 черных. Шары достают до тех пор, пока не появится белый шар. Составить закон распределения случайной величины Х – числа испытаний. Найти , , .

По таблице распределения Х:

Х

-2

0

2

4

6

Р

0,2

0,1

0,3

0,2

0,2

Найти , , . Найти .


На главную