Вычислить определитель Метод  Крамера Аналитическая геометрия Кривые второго порядка Вычислить предел Найти производные Комбинаторика Теория поля Вычислить интеграл числовые ряды

Типовик по математике

Даны вершины А (-3,-2), В (4,-1), С (1,3) трапеции ABCD (AD || BC). Составить уравнение средней линии трапеции. Полученное уравнение привести к уравнению в «отрезках» и к нормальному.

Решение: Составим уравнение прямой ВС (уравнение прямой, проходящей через две точки).

От общего уравнения прямой () перейдем к уравнению с угловым коэффициентом ().

Средняя линия трапеции параллельна ВС и проходит через середину отрезка АВ. Е – середина АВ, следовательно Е ().

Так как прямые параллельны, то . Используем уравнение прямой

Уравнение средней линии трапеции: .

Уравнение прямой в отрезках:

Рис. 3

, а – величина отрезка отсекаемого прямой на оси ОХ, b - величина отрезка отсекаемого прямой на оси ОY.

Перенося свободный член данного уравнения в правую часть равенства, получим . Деля обе части равенства на -5, будем иметь . Следовательно,  (Рис. 4).

Рис. 4

Нормальное уравнение прямой (Рис. 5) , р – длина перпендикуляра, опущенного из начала координат на прямую, a - угол, который образует этот перпендикуляр с положительным направлением оси ОХ.

Рис. 5

Для приведения общего уравнения прямой к нормальному виду обе его части надо умножить на нормирующий множитель , причем перед дробью следует выбрать знак, противоположный знаку свободного члена С в общем уравнении прямой.

Находим нормирующий множитель  (знак минус берется потому, что С = 5 > 0). Таким образом, нормальное уравнение полученной прямой имеет вид .

Направляющие косинусы . Длина перпендикуляра из начала координат к прямой .


На главную